
SIAM J. MATRIX ANAL. APPL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 228–244

DIAGONAL MARKOWITZ SCHEME WITH
LOCAL SYMMETRIZATION∗

PATRICK R. AMESTOY† , XIAOYE S. LI‡ , AND ESMOND G. NG‡

Abstract. We describe a fill-reducing ordering algorithm for sparse, nonsymmetric LU fac-
torizations, where the pivots are restricted to the diagonal and are selected greedily. The ordering
algorithm uses only the structural information. Most of the existing methods are based on some
type of symmetrization of the original matrix. Our algorithm exploits the nonsymmetric structure
of the given matrix as much as possible. The new algorithm is thus more complex than classical
symmetric orderings, but we show that our algorithm can be implemented in space bounded by the
number of nonzero entries in the original matrix, and has the same time complexity as the analogous
algorithms for symmetric matrices. We provide numerical experiments to demonstrate the ordering
quality and the runtime of the new ordering algorithm.

Key words. sparse nonsymmetric matrices, linear equations, ordering methods

AMS subject classifications. 65F05, 65F50

DOI. 10.1137/050637315

1. Introduction. We consider the direct solution of sparse linear equations
Ax = b using Gaussian elimination, where A is an n×n nonsymmetric sparse matrix.
A major difficulty with nonsymmetric matrices is that they are rarely diagonally dom-
inant, which means that during numerical factorization one must compromise fill-in
reduction with numerical stability. Many nonsymmetric solvers deal with this situ-
ation using the three-phase approach, which includes an analysis phase, a numerical
factorization phase, and a triangular solution phase [2, 6, 16]. Iterative refinements
may be included in the triangular solution. The analysis phase includes a (numerical)
preprocessing of the matrix and a symbolic phase that builds the computational graph
for the numerical factorization phase. An advantage of the three-phase approach lies
in its ability to anticipate the choice of the next pivot, which decouples the analysis
from factorization and makes parallelization of numerical factorization easier. There-
fore, it is a very important class of methods on high performance computers. In this
context, it has been observed in [3] that it is critical to put numerically large entries on
the diagonal during the preprocessing phase to limit the scope of numerical pivoting
during numerical factorization. One may then want to preserve this diagonal dur-
ing sparsity reordering. That is, only a symmetric permutation is allowed afterward.
One common practice to obtain such an ordering is to apply a symmetric ordering
algorithm, either minimum-degree or nested-dissection variant, to the symmetrized
pattern of A + AT . Such reordering algorithms do not exploit the fact that during
factorization the solvers can exploit the asymmetry of the permuted matrix.

∗Received by the editors August 1, 2005; accepted for publication (in revised form) by M. Benzi
July 31, 2006; published electronically January 12, 2007. This work was supported in part by the
Director, Office of Advanced Scientific Computing Research, Division of Mathematical, Information,
and Computational Sciences of the U.S. Department of Energy under contract DE-AC03-76SF00098,
and in part by NSF-INRIA grant NSF-INT-0003274.

http://www.siam.org/journals/simax/29-1/63731.html
†ENSEEIHT-IRIT, 2 rue Camichel, 31071 Toulouse, France (amestoy@enseeiht.fr). Part of the

work of this author was performed while he was on a sabbatical visit to Lawrence Berkeley National
Laboratory.

‡Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F-1650, Berkeley,
CA 94720 (xsli@lbl.gov, egng@lbl.gov).

228

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 229

In this article, we propose a new symmetric ordering algorithm, working directly
on A and exploiting the nonsymmetric structure of A, to compute a “good” symmetric
permutation of A. It is based on greedy heuristics that preserve the large diagonal
entries and at the same time take into account the asymmetry of the matrix. In the
symmetric case, the minimum-degree algorithm is a very effective greedy heuristic
for fill-in reduction. By using the quotient graph elimination model [12, 13] and the
approximate degree updates [1], the minimum-degree algorithm can be implemented
very efficiently both in time and space. The nonsymmetric variant of minimum-
degree was actually discovered earlier and was named after Markowitz [19], in which
the “degree” of a vertex is the product of the row count and column count (known as
the Markowitz count). But the original Markowitz algorithm is asymptotically slower
than the minimum-degree algorithm, mainly due to the lack of a concise quotient
graph model. A theoretical advancement was made by Pagallo and Maulino [22], who
extended the quotient graph idea for symmetric matrices to the nonsymmetric case
by introducing the bipartite quotient graph and showed that the bipartite quotient
graph model can be implemented in space bounded by the size of A. But timewise,
using only the quotient graph model does not lead to an ordering algorithm that is as
fast as the minimum-degree algorithm. This is because the lengths of the reachable
paths to be searched when updating the Markowitz counts are not bounded. One main
contribution of our work is the introduction of a local symmetrization mechanism that
bounds the lengths of the reachable paths as in the symmetric case while capturing
most of the asymmetry in the matrix. A secondary contribution is to adapt and
extend the metrics to select pivots based on approximate degree [1] to metrics based
on approximate Markowitz count and deficiency [24, 20]. Indeed, in our context all
metrics have to anticipate the effect that local symmetrization would have on the pivot
to be selected. Our algorithm has the same asymptotic complexity as the minimum-
degree algorithm, both in space and in time.

The remainder of the paper is organized as follows. In section 2, we first briefly
introduce the bipartite quotient graph notation and properties. We then present
the local symmetrization technique and describe our new ordering algorithm. In
particular, we discuss how to update the quotient graph and how to compute metrics
to select pivots within this framework. Section 3 describes the numerical experiments
we have performed and analyzes the effect of the new ordering algorithm on the
multifrontal code MA41 UNS [2, 6]. Section 4 provides a summary of this research.

2. Diagonal Markowitz with local symmetrization. This section presents
the algorithmic ingredients of our new Markowitz ordering framework. We show
that the Markowitz algorithm can be implemented as efficiently as the approximate
minimum-degree algorithm by using bipartite quotient graphs, the local symmetriza-
tion scheme, and the metrics based on approximate row and column degrees.

2.1. The Markowitz criterion. The Markowitz ordering algorithm [19] has
been used successfully in general-purpose solvers [11]. This local greedy strategy can
be described succinctly as follows. After k steps of Gaussian elimination, let rki (resp.,
ckj) denote the number of nonzero entries in row i (resp., column j) of the remaining
(n− k)× (n− k) submatrix. The (structural) Markowitz criterion is to select, as the
next pivot, a nonzero entry akij from the remaining submatrix that has the minimum

Markowitz count (rki −1)×(ckj −1). This attempts to minimize an upper bound on the
amount of fill-in generated at step k+1. Note that, in our context, we want to restrict
the pivot selection to the diagonal of the remaining submatrix. This restriction of the

230 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

Markowitz scheme will be referred to as the diagonal Markowitz scheme.
The simple rule above for choosing the next pivot does not immediately render

an efficient implementation, because it requires updating the sparsity pattern of the
remaining submatrix at each step, which may generate fill-in. From the development
of the minimum-degree algorithm, which can be considered as a symmetric variant
of Markowitz algorithm, we learned that by using the quotient graph elimination
model [13], the algorithm can be implemented in space bounded by the size of the
original matrix rather than that of the filled matrix. This is the so-called in-place
property and is very much desirable in an efficient ordering algorithm. Pagallo and
Maulino [22] extended the quotient graph model by using bipartite quotient graphs
to model the nonsymmetric elimination and showed that this model indeed has the
in-place property. Now we briefly review this concept and illustrate how we can use
and modify this model to design our ordering algorithm.

2.2. Bipartite quotient graphs. Let A be a nonsymmetric n×n matrix. The
nonzero pattern of A can be represented by a bipartite graph G = (Vr, Vc, E), where
Vr and Vc are the sets of row and column vertices, respectively. For a row vertex
ri ∈ Vr and a column vertex cj ∈ Vc, an edge (ri, cj) ∈ E exists if and only if aij �= 0.
Let G0 = (V 0

r , V
0
c , E

0) be the same as G. We use a bipartite graph Gk = (V k
r , V k

c , Ek)
to represent the nonzero pattern of the remaining submatrix after k steps of Gaussian
elimination. Assuming pivots are chosen from the main diagonal, at step k, the
transformation from Gk−1 to Gk is based on the following elimination rule. Suppose
the kth pivot node (rp, cp), p ≥ k, is selected for elimination. The vertex sets become
V k
r = V k−1

r \{rp} and V k
c = V k−1

c \{cp}. The edge set Ek is derived from Ek−1 by
deleting the edges incident on cp and rp and adding edges (ri, cj) for all ri and cj
that are adjacent to cp and rp, respectively. This creates a fully connected bipartite
subgraph (a clique in the symmetric analogue). We may refer to this as a bipartite
clique, or biclique in short.

We now briefly review the symmetric quotient graph elimination model. The main
idea is to use a compact representation to implicitly store the subgraph induced by the
vertices that have been eliminated. Suppose Gs is a undirected graph corresponding
to a sparse symmetric matrix. Let S denote the subset of vertices in Gs that have
been eliminated. Consider the subgraph Gs(S) induced by S in Gs. In the quotient
graph model, each connected component1 in G(S) will be represented by a single
“supervertex.” As a result, any path in Gs from a vertex i �∈ S to a vertex j �∈ S
through S corresponds to a path through at most one supervertex in S. The set
of vertices adjacent to i in the remaining filled subgraph is given precisely by the
reachable set of i through S. See [13] for details.

We now describe the nonsymmetric elimination process using the bipartite quo-
tient graph model. We will use calligraphic letters to denote the sets associated with
the bipartite quotient graph. Let Gk denote the bipartite quotient graph which rep-
resents the structure of the reduced submatrix after k steps of Gaussian elimination,
and define G0 = G0. When there is no ambiguity, we will omit superscript k. Both
row and column vertices are partitioned into two sets: the set of uneliminated vertices
referred to as variables and the set of eliminated vertices referred to as elements. That
is, G = (Vr∪V̄r,Vc∪V̄c, E∪Ē). Members of Vr (Vc) will be referred to as row (column)
variables (to distinguish them from the row vertices in Vr (Vc)), while members of
V̄r (V̄c) will be referred to as row (column) elements. The edge set E contains the

1A connected component is a graph in which there is a path between every pair of vertices.

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 231

edges between row (column) and column (row) variables. The edge set Ē contains
the edges between row (column) variables and column (row) elements, as well as the
edges between row elements and column elements. An eliminated pivot e = (re, ce)
has two vertices re ∈ V̄r and ce ∈ V̄c referred to as a coupled element. Similarly an
uneliminated pivot entry (a diagonal entry in the reduced matrix) i = (ri, ci) will be
referred to as a coupled variable. A nonzero entry (ri, cj) exists in the factors if and
only if there exists a path of the form ri → ce1 → re1 . . . → cel → rel → cj , where
ei = (rei , cei), 1 ≤ i ≤ l, are the coupled elements associated with the pivots already
eliminated [23]. Therefore, following such paths, we can determine the nonzero entries
of any row i or column j in the reduced submatrix.

Let Ai∗ be the set of column variables adjacent to row variable ri in G which have
never been modified after k steps of elimination. A∗j is defined similarly for column
variable cj . For each row variable ri and column variable cj , define the element
adjacency lists:

Ri ≡ {e = (re, ce) : (ri, ce) ∈ Ē} ⊆ V̄c, the set of coupled elements adjacent to ri ,

Cj ≡ {e = (re, ce) : (re, cj) ∈ Ē} ⊆ V̄r, the set of coupled elements adjacent to cj .

The adjacency lists of variables in the current bipartite quotient graph are then defined
as

Ui ≡ AdjrowG (ri) = Ai∗ ∪Ri ,(1)

Lj ≡ AdjcolG (cj) = A∗j ∪ Cj .(2)

For each coupled element e = (re, ce) define the variable adjacency lists:

Le ≡ {ri : (ri, ce) ∈ Ē} ⊆ Vr, the set of row variables adjacent to ce ,

Ue ≡ {cj : (re, cj) ∈ Ē} ⊆ Vc, the set of column variables adjacent to re .

In other words, Le and Ue are, respectively, the sets of row and column vertices in
the biclique induced after elimination of the coupled element e.

Now, suppose a pivot p = (rp, cp), p ≥ k, is chosen to be eliminated next. If there
exists a cycle of the form rp → ce1 → re1 . . . → cel → rel → cp → rp (ei ≤ k, 1 ≤ i ≤ l)
(referred to as a strongly connected component in [22]), then Lei ⊆ Lp and Uei ⊆ Up

for all i. Hence, except for (rp, cp), the other coupled elements in the cycle are no
longer needed. See Figure 1(a) for an illustration. When updating the quotient graph,
we can coalesce the coupled elements in the cycle into a single “supervertex,” using
the last element p as the representative vertex and removing the other elements and
the incident edges. This process will be referred to as element absorption.

The transformation from bipartite quotient graph Gk−1 to Gk at step k is carried
out as follows. We search in the subgraph of Gk−1 induced by V̄k−1

r ∪ V̄k−1
c for cycles

that include the pivot (rp, cp). We then perform the element absorptions and form
the new adjacency lists Lp and Up. The structure of a column k in the reduced
submatrix, L∗k, can be determined very easily using Gk−1: �ik �= 0 if and only if ri is
reachable from ck through the coupled elements in Gk−1. The structure of Uk∗ can be
determined in a similar way. The biclique introduced by the current pivot is then used
to prune the edges in Ek. This process will be referred to as variable pruning. From
the variable pruning process it results that (ri, cj) ∈ Ek if and only if (ri, cj) ∈ E and
entry ai,j of the original matrix has not been modified during steps 1 through k of the
elimination. It was proved that using this scheme, the in-place property is maintained

232 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

e1

p

i

x

x

x

r

e2r

cce1 e2

e1

e2

 r

cp

 p

(a) Quotient graph with a cycle.

e1

e2

p

x

x

i

j

k

(b) Quotient graph without cycle.

Fig. 1. (a) Quotient graph with a cycle: rp → ce1 → re1 → ce2 → re2 → cp. (b) Quotient
graph without cycle.

for each Gk [22]. But unlike the symmetric case, here, computing the reachable sets
can be very expensive, because the length of the search path is not bounded by two.
(In fact, it can be as long as |V̄r ∪ V̄c| + 1 if no cycle is found.) This is illustrated by
the example in Figure 1(b). There is only a simple path between p and elements e1

and e2, which results in Le1 ⊆ Le2 ⊆ Lp. However, Ue1 ⊆/ Up and Ue2 ⊆/ Up. For
an uneliminated variable i such that ri ∈ Lp ∩ Le1 ∩ Le2 , all the column variables
in Up ∪ Ue2 ∪ Ue1 need to be included in Ui∗. In an in-place algorithm, one must
store ri only in Le1 , and then via the path ce1 → re1 → ce2 → re2 → cp one can
deduct that Ui∗ should contain the union Up∪Ue2 ∪Ue1 . We also note that, although
Le1 ⊆ Le2 ⊆ Lp, Le1 alone may be required to build L∗j for any j such that cj ∈ Ue1

and cj �∈ Ue2 ∪Up. This means that Le1 should not be absorbed into Lp. Furthermore,
if one considers a variable k such that ck ∈ Up but ck �∈ Ue1 ∪ Ue2 , then Lp will need
to be included in Lk. If we maintain the in-place property, the entries belonging to
both Lei , i = 1, 2, and Lp are stored only in Lei , then we must be able to reach ei,
i = 1, 2, through a path starting at p: cp → re2 → ce2 → re1 .

2.3. Local symmetrization. To avoid the long search path in a truly nonsym-
metric algorithm, we have designed a relaxed diagonal Markowitz scheme. Figure 2
illustrates such a relaxation. The entry marked s shows an artificial nonzero in-
troduced to symmetrize only a local part of the matrix. In the example, we assume
that (rp, cp) is the current pivot, and Rp = ∅ and Cp = {e1, e2}. We also assume
that Ue1 ⊆/ Up and Ue2 ⊆/ Up. For the sake of clearness, we have assumed that
Ue1 ∩ Up = ∅ and Ue2 ∩ Up = ∅. In order to obtain the row structure Ui∗, where
ri ∈ Le1 ∩ Le1 ∩ Lp, Ri must contain elements e1, e2, and p. In other words, all the
variables in Ue1 ∪ Ue2 ∪ Up should be included in Ui∗. With symmetrization (shown
on the right part of Figure 2), we pretend that Rp = {e1, e2} and Cp = {e1, e2}.
Therefore, Ue1 ⊆ Up and Ue2 ⊆ Up. Hence, the coupled element p can absorb the
coupled elements e1 and e2. As a result, we now need only the adjacency lists of rp
and cp to get the adjacency lists of ri and ci. This eliminates the need to keep the
adjacency lists of re1 , re2 , ce1 , and ce2 .

In summary, the local symmetrization works as follows. Suppose the current pivot

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 233

ss

e1

e2

p

i

x

x

Elimination of p WITH local symmetrization

e1

e2

p

i

x

x

Elimination of p WITHOUT symmetrization

Fig. 2. Illustration of local symmetrization.

is (rp, cp). The adjacency lists Up and Lp are computed by

Up =

⎛
⎝Ap∗ ∪

⋃
e∈Rp

Ue ∪
⋃
e∈Cp

Ue

⎞
⎠ \{cp} ,(3)

Lp =

⎛
⎝A∗p ∪

⋃
e∈Cp

Le ∪
⋃

e∈Rp

Le

⎞
⎠ \{rp} .(4)

The third terms in the unions result from the local symmetrization. The adjacency
lists in the bipartite quotient graph (see (1) and (2)) of all the row (column) variables
in the adjacency lists of the newly formed coupled element p should then be updated.
All the row and column elements in Rp ∪ Cp are absorbed by the coupled element
p. Therefore, if (re, ce) is such an absorbed element, then re (ce) will be replaced by
rp (cp) each time it appears in an edge of Ē and will be excluded from the quotient
graph together with Le (Ue). Furthermore, because of local symmetrization, more
variable pruning can be performed. Let i = (ri, ci) be a coupled variable (diagonal
entry in the reduced matrix) such that ri ∈ Lp and ci /∈ Up. We can anticipate local
symmetrization between i and the coupled element p to prune all the row variables
in A∗i that belong to Lp. Entries in Ai∗ can also be pruned in a similar way (even if
ri /∈ Lp).

Our relaxation mechanism will be referred to as local symmetrization, because
the symmetrization is applied to only the local part of the graph involving only those
row and column elements adjacent to cp and rp. Globally, the nonzero structure
generally still remains nonsymmetric (the index sets {k : rk ∈ L∗i} and {k : ck ∈ Ui∗}
are different). By construction, the length of a search path is bounded by three. In
essence, we trade off some amount of asymmetry and space (because some zero entries
may be stored) with a much faster search algorithm. We show in Theorem 2.1 that
although the local symmetrization may introduce extra (zero) entries in the factors
with respect to a pure nonsymmetric scheme (see Figure 2), it leads to an in-place
algorithm.

Theorem 2.1. Let v denote a row or a column variable in Gk, and let Ak
v∗ (resp.,

Ak
∗v) denote the set of column (resp., row) variables adjacent to v which have not been

234 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

modified after k steps of elimination; then for all 2 ≤ k ≤ n, |Ak
v∗|+ |Rk

v | ≤ |Ak−1
v∗ |+

|Rk−1
v | ≤ |A0

v∗|, and |Ak
∗v| + |Ck

v | ≤ |Ak−1
∗v | + |Ck−1

v | ≤ |A0
∗v| .

Proof . We focus on the row structures in this proof. The proof for the column
structures is similar. We prove this theorem by induction. By construction, R0

i = ∅,
so |A0

i∗|+ |R0
i | = |A0

i∗|. Suppose at the kth step of elimination that (rp, cp) is selected
as the pivot. We first build Uk

p using (3). The entries in Uk
p either come from the

original matrix Ap∗ or from the entries in Ue such that e ∈ Rp ∪ Cp. Because of local
symmetrization, the coupled element e will be absorbed by p, and the space of Ue

can be used by Uk
p to store the new entries from Ue. To take into account the fill-in

we have to update the adjacency lists of all variables adjacent to the pivot. We focus
on the row structures and thus consider the updating of Uk

i for ri ∈ Lk
p using (1).

By construction, all the entries in Uk
p ∩ Ak−1

i∗ are pruned from Ak−1
i∗ , showing that

|Ak
i∗| ≤ |Ak−1

i∗ |, and cp is added to Rk
i . Now we consider the size of Rk

i . If ri ∈ Lk
p,

then there exists a coupled element ej = (rj , cj) in the supervertex p = (rp, cp) such
that (ri, cj) is in the original graph. Since (ri, cj) has been pruned and cj cannot
belong to any other supervertex, then we have |Ak

i∗| + |Rk
i | ≤ |Ak−1

i∗ | + |Rk−1
i |. This

concludes our proof of the in-place property of the algorithm.
Corollary 2.2. The quotient graphs Gk generated at each step of the diagonal

Markowitz scheme with local symmetrization can be stored in the space of the original
graph G0. More precisely, |Ek ∪ Ēk| ≤ |Ek−1 ∪ Ēk−1| ≤ |E0| for all 2 ≤ k ≤ n.

Theorem 2.1 implies that the in-place property holds for the row adjacency lists
and for the column adjacency lists so that we could have an in-place implementation
while keeping two separate lists to store entries in rows and in columns at each step
of the elimination.

We will call our relaxed scheme diagonal Markowitz with local symmetrization
(DMLS). We now illustrate its main properties with an example. In Figure 3, we apply
the DMLS algorithm assuming that pivots are in the natural ordering. The matrix
on the right is the structure of the LU factors. The elimination tree [18] built by
the DMLS algorithm is shown in Figure 4. Each node of the tree corresponds to the
elimination of a pivot. The nonsymmetric frontal matrix of each node corresponds
to the structure of Up and Lp as defined by (3) and (4). The dark area corresponds
to the entries in the reduced matrix updated during the node elimination (i.e., the
nonsymmetric contribution block sent by one node to its parent).

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

S

F F

LU factors with DMLS Original Matrix

Fig. 3. Illustration of the fill-ins introduced by the DMLS algorithm. F corresponds to the normal
fill-in when eliminating pivot (1, 1). S corresponds to the fill-in due to the local symmetrization when
eliminating pivot (2, 2).

At the first step, pivot (1, 1) is eliminated resulting in two fill-ins (F in positions
(4, 2) and (4, 3)). In the quotient graph G1, these fill-ins are implicitly represented
by removing r1 from A∗2 and A∗3 and adding r1 to C2 and C3. Note that at this
step there is no symmetrization of the column and row adjacency lists of r1 and c1,
which otherwise would result in a completely full reduced matrix. When eliminating

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 235

1

1

1 32

2 3

4

4

2

3 4

3

2

3

4

4

4

S

4

Fig. 4. Elimination tree built by the DMLS algorithm applied to the matrix of Figure 3.

pivot (2, 2), since r1 ∈ C2 and c1 /∈ R2, local symmetrization is applied, and when
computing U2 by (3) entry S in position (2, 3) is added to the quotient graph G2 (i.e.,
the coupled element 1 is absorbed by 2, and r2 is added to C3). One should note
that entry (2, 1) is only virtually considered as nonzero and is never added in the LU
factors. Similarly, when eliminating pivot (3, 3) at the next step, only the effect of
adding entry (3, 2), by symmetrization of (2, 3), on the structure of the column L3 is
considered (it happens to have no effect in our example). Even if entry (3, 2) is not
effectively stored and has no effect on the size of the factors, it still has an effect on
the structure of the dependency graph, as shown in Figure 4. The fact that pivot 3
can absorb the coupled element 2 because of the artificial (3, 2) nonzero entry also
means that node 3 in Figure 4 becomes the unique parent of node 2 in the dependency
graph, which in turn becomes a tree (or forest when the matrix is reducible). It is
also interesting to note that, since entry (2, 3) (S in the figure) is considered nonzero,
column 3 is added to the frontal matrix of node 2. But entry (4, 3) will not be modified
during elimination of pivot (2, 2), because entry (2, 3) is structurally zero. Entry (4, 3)
is a contribution resulting only from elimination of pivot (1, 1), and it is needed only
when eliminating pivot (3, 3). Because of this newly added column, the frontal matrix
of node 2 has the minimum structure to carry all the contributions of node 1 to all of
its ancestral nodes 2 and 3. The edge between nodes 1 and 3 can be removed, which
corresponds to the coupled element 2 absorbing the coupled element 1 in the quotient
graph.

We have shown that even if local symmetrization may result in extra fill-ins, it
does not symmetrize the adjacency lists of the pivot; it builds at each elimination step
the minimal nonsymmetric structure capable of absorbing all the nonsymmetric con-
tributions from all the elements adjacent to the pivot. This nonsymmetric structure
is called the nonsymmetric frontal matrix , similar to the symmetric case. By doing
so, node p becomes the unique parent of all the nodes e such that ce ∈ Rp or re ∈ Cp
in a tree rooted with the last pivot. The DMLS algorithm thus explicitly builds an
elimination tree in which each node corresponds to the processing of a nonsymmet-
ric frontal matrix whose structure is defined by Lp and Up. This elimination tree is
identical to the dependency graph that MA41 UNS [6] would build if the same ordering
were provided. In fact, the DMLS ordering is searching for an ordering that provides a
good nonsymmetric elimination tree with respect to some local criterion/metric. The
DMLS ordering also provides a good estimation of the size of the factors and all the

236 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

working space required during numerical factorization using the MA41 UNS approach.
This estimation is exact if the diagonal pivots are numerically stable.

2.4. The DMLS algorithm. To design the DMLS algorithm, we have exploited
many algorithmic techniques from the AMD approach [1] and have extended them to
the nonsymmetric case. The main difficulty is handling local symmetrization during
degree calculation. We first explain how to adapt the symmetric algorithms, then
describe the modifications needed for local symmetrization, and conclude this section
with a description of the metrics used in pivot selection.

Exploiting identical structures in the graph can greatly speed up the degree up-
date at each elimination step. Two coupled variables i = (ri, ci) and j = (rj , cj)
are said to be indistinguishable in G if they have the same row adjacency structure
and the same column adjacency structure in G (although the row structure may be
different from the column structure). Indistinguishable coupled variables can then
be merged into a single so-called supervariable. We use a boldface letter to denote a
supervariable. Thus, i = (ri, ci), with ri ≡ {ri, rj}, and ci ≡ {ci, cj}.

For each row supervariable ri, let dri denote its external row degree [1, 17]. Simi-
larly, for each column supervariable ci, let dci denote its external column degree. The
external degrees are defined as

dri =
∣∣Ai∗\ci

∣∣ +

∣∣∣∣
(⋃

e∈Ri∪Ci

Ue

)
\ ci

∣∣∣∣ ,(5)

dci =
∣∣A∗i\ri

∣∣ +

∣∣∣∣
(⋃

e∈Ci∪Ri

Le

)
\ ri

∣∣∣∣ .(6)

Note that we should consider all the elements in both Ri and Ci contributing to the
row degree and column degree. Indeed, because of local symmetrization, when (ri, ci)
is selected as the pivot at a later step, those elements will contribute to the structure
of both Ui and Li (see (3) and (4)). Therefore, we must ensure that the computed
degrees are also consistent with the local symmetrization scheme. This does not mean
that we symmetrize all the edges in Ē . It means only that our degree evaluation must
anticipate what would happen if (ri, ci) were selected as the pivot. That is, during
the degree calculation of the uneliminated variables, we need to simulate the effect
of local symmetrization. The local symmetrization actually takes place only when a
variable is selected as the pivot. This has been illustrated in Figure 3.

Following the symmetric AMD algorithm [1], we can approximate the true degrees
by their upper bounds, d̄ri and d̄ci , which, at step k, can be computed by

d̄ri
k

= min

⎧⎪⎪⎨
⎪⎪⎩

n− k,

d̄ri
k−1

+ |Up\ci|,
|Ai∗\ci| + |Up\ci| +

∑
e∈Ri∪Ci

|Ue\Up| − αi,
(7)

d̄ci
k

= min

⎧⎪⎪⎨
⎪⎪⎩

n− k,

d̄ci
k−1

+ |Lp\ri|,
|A∗i\ri| + |Lp\ri| +

∑
e∈Ci∪Ri

|Le\Lp| − βi.
(8)

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 237

Note that, unlike the symmetric case, two correction terms αi and βi have been
introduced to improve the accuracy of the approximation to the external degree. Let
us justify the αi term in (7). In the nonsymmetric case, it may happen that ci /∈ Up,
whereas for an accurate prediction of d̄ri in the context of local symmetrization, we
need to pretend that ci ∈ Up. In this case, |ci| was mistakenly counted in every
|Ue\Up| for e ∈ Ci and should thus be deducted. The total amount that should be
deducted is αi = |Ci| × |ci|; see [4] for details.

Once d̄ri and d̄ci are computed, we have many choices of minimization criteria
to select the next pivot. Each choice will lead to a different ordering. One set of
criteria or metrics is degree-based, which is a direct function of the degrees (e.g.,
Min(d̄ri × d̄ci), Min(d̄ri + d̄ci), Min(Min(d̄ri , d̄ci)), Min(Max(d̄ri , d̄ci))). Another set
is deficiency-based, which is based on estimates of the amount of new fill-in generated
at each step. We have experimented several variants of the approximations of the
deficiency. Most of the heuristics in [20, 24] can be adapted easily to the nonsymmetric
case. Moreover, we have considered a deficiency heuristic that results from discussions
with T. Davis and I. S. Duff while working on the approximate minimum degree
ordering for symmetric matrices AMD. This approximation of the deficiency (referred
to as AMDF in the symmetric context) is based on the following observation. Suppose
{rp, cp} is the current pivot and the two column elements e1 and e2 are adjacent to
ri ∈ Lp. In our approximate degree d̄ci we count twice the row variables that belong
to (Le1\Lp) ∩ (Le2\Lp). This property can be exploited to improve the estimation
of the deficiency, since, in this context, we try to deduct from the degree product
the cliques of all the elements adjacent to the current variable. We can consider that
(Le1\Lp) ∩ (Le2\Lp) = ∅, because this overlapped term also occurs in the degree
product, which is cancelled after subtraction. Thus, for each ri ∈ Lp, we can deduct
both the area relative to the current clique p (i.e., |Lp| × |Up|) and the sum of the
“external areas” of all the elements adjacent to (ri, ci) (i.e.,

∑
e∈Ci∪Ri

|Le\Lp|× |Up|).
The external area is readily available, since |Le\Lp| has already been computed during
the approximate degree calculation. This leads to a more accurate approximation
of the deficiency than the approximations introduced in [20, 24] when used in an
approximate minimum degree code. This approximation of the deficiency can be
easily adapted to our nonsymmetric ordering and will be referred to as DMLS-MF. Note
that using AMDF on symmetric matrices, the amounts of reduction in fill-in and flop
count relative to AMD have been found to be similar to those reported in [20, 24].

3. Numerical experiments. We now evaluate the DMLS ordering algorithm and
compare its ordering quality with that obtained by applying both approximate mini-
mum degree and minimum deficiency algorithms on A + AT .

3.1. Testing environment. To experiment with our ordering algorithm, we
will consider the unsymmetrized multifrontal code MA41 UNS [2, 6], which automati-
cally detects and exploits the structural asymmetry of the submatrices involved when
processing the elimination tree associated with the pattern of the symmetric matrix
A + AT. In [7], MA41 UNS with AMD ordering was shown to be very competitive with
SuperLU and UMFPACK on a large class of matrices including very nonsymmetric ones.
We will show in this section that using DMLS ordering can significantly improve the
speed of MA41 UNS. MA41 UNS is a tree-based multifrontal algorithm, in which some
steps of Gaussian elimination are performed on a dense frontal matrix at each node of
the assembly tree, and the Schur complement (or the contribution block) that remains
is passed for assembly at the parent node.

238 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

MA41 UNS can benefit from a numerical scaling of the matrix followed by a nu-
merical preordering (row or column permutations) to maximize the magnitude of the
diagonal entries. After numerical pivoting and scaling, a sparsity preserving ordering
(symmetric permutation of A) based on an analysis of the pattern of A + AT can be
used. The computational graph of the factorization is then computed assuming that
diagonal pivots are numerically stable. Since this assumption may not be entirely true
during numerical factorization, the solver uses partial pivoting with a threshold value
to select numerically stable pivots. It is thus possible that some variables cannot be
eliminated from a frontal matrix. The rows and columns containing the noneliminated
variables of a frontal matrix are then added to the contribution block and passed to
the parent node. Those delayed eliminations will result in an increase in the size of the
LU factors estimated in the analysis and an increase in the number of operations. In
practice, it has been observed that using MC64 [21, 9, 10] from HSL [15] as preordering
can significantly reduce the number of delayed pivots during factorization [3]. This
preordering will thus be applied on all our test matrices.

Our test matrices are from the forthcoming Rutherford-Boeing Sparse Matrix
Collection [8], the industrial partners of the PARASOL Project,2 Tim Davis’s collec-
tion3, and SPARSEKIT2.4 Only matrices with structural symmetry less than 0.5 and
dimension greater than 1000 were chosen. We define the structural symmetry as the
fraction of the nonzeros matched by nonzeros in symmetric locations. Thus, a sym-
metric matrix has a value of 1, and a highly nonsymmetric matrix has a value close
to 0. When there were many similar matrices from the same application domain, we
used only a subset with the largest dimensions. Altogether, there were 61 structurally
nonsymmetric matrices in our study.

Our computer platform comprises a 2.8 GHz Pentium 4 processor, 2 GBytes of
memory, and 1 MByte of cache, with a Linux operating system. We used gcc -O to
compile the DMLS code and pgf90 -O to compile all the FORTRAN routines. We also
used Goto’s BLAS library libgoto p4 512-r0.94.so [14].

We systematically applied random row and column permutations to each matrix.
Eleven different permutations were applied to each matrix, and the run that provided
the median value of the LU factor size was used in the report.

3.2. Results. We first evaluated the quality of the DMLS ordering when using
different minimization metrics and heuristics mentioned in section 2.4 (min-prod, min-
sum, min-min, min-max, and minimum deficiency). Our study showed that DMLS-MF

(i.e., DMLS with approximate minimum deficiency) gives the best quality in terms of
fill-in and flop reductions. Therefore, we used DMLS-MF in the rest of the experiments.
To illustrate the gain in quality we compared DMLS-MF with the standard approximate
minimum degree algorithm AMD as well as AMDF (our best local heuristic to approximate
the deficiency for the symmetrized matrix A + AT).

We observed that for five highly reducible matrices (raefsky5.rua, raefsky6.rua,
meg1.rua, bayer05.rua and bayer07.rua) DMLS-MF significantly outperformed both AMD

and AMDF—the factor sizes were reduced by 4 to 10 times. Although this is a nice
property of DMLS it not the scope of our work, since on highly reducible matrices one
could consider preprocessing the matrices to first permute them to a block triangular
form (BTF) and then search for a symmetric permutation within the diagonal blocks
of the BTF format. We have thus excluded these five matrices when reporting the

2EU ESPRIT IV LTR Project 20160, http://www.parallab.uib.no/projects/parasol.
3http://www.cise.ufl.edu/research/sparse/matrices.
4 http://math.nist.gov/MatrixMarket/data/SPARSKIT.

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 239

results, because they will skew the statistics. For the other 56 matrices, we compare
in Figure 5 the actual size of the factors (including the extra fill-ins due to numerical
pivoting) of the DMLS-MF, AMD, and AMDF orderings. For a relatively large number of
matrices (23 with respect to AMD and 18 with respect to AMDF), the DMLS-MF ordering
leads to ratios greater than 1.20. Sometimes DMLS-MF may give worse ordering than
AMD or AMDF, but it is never less than a ratio of 0.70. Note that there are eight
matrices which have structural symmetry less than 0.5 initially but larger than 0.5
after preordering with MC64. As expected, for these matrices, relatively smaller gains
are obtained from DMLS.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

1

1.2

1.4

1.6

1.8

2

Structural Symmetry

R
a

ti
o

 N
Z

 i
n

 L
U

 (
A

M
D

/D
M

L
S

−
M

F
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Structural Symmetry

R
a
tio

 N
Z

 in
 L

U
 (

A
M

D
F

/D
M

L
S

−
M

F
)

Fig. 5. Actual fill-in ratios. The x-axis shows the structural symmetry after preprocessing.
Left: AMD/DMLS-MF, mean ratio is 1.22, median ratio is 1.14; right: AMDF/DMLS-MF, mean ratio is
1.20, median ratio is 1.6.

In Figure 6, we compare the number of floating-point operations performed during
factorization (including numerical pivoting) using the three orderings. For a large
number of matrices, the DMLS-MF ordering leads to ratios greater than 1.30 for the flop
reduction compared to AMD (34 matrices) and AMDF (23 matrices).

We now focus on 19 large matrices of dimension larger than 10000 and having
initial structural symmetry smaller than 0.5 (except for Sandia/mult dcop 03 and
Zhao/Zhao2). This is a subset of the 61 matrices studied above. For this subset, we
perform a more detailed quantitative comparison of the AMDF and DMLS-MF algorithms.
These matrices are listed in Table 1 and are sorted in increasing symmetry after
the matrices are randomly permuted and reordered using the maximum transversal
given by MC64. Here, among the 11 symmetry numbers from the 11 initial random
permutations, we report the one corresponding to the permutation that gives the
mean fill ratio of AMDF over DMLS-MF.

In Table 2 we report both the estimated factor size given by the analysis phase
(columns 2 and 3) and the actual factor size computed during factorization using
MA41 UNS (columns 5 and 6). Since the pruned frontal matrix structures appeared in
factorization are exactly those on which the DMLS algorithm is based, the estimation
given by DMLS-MF is correct modulo small variation due to numerical pivoting. In fact,
in addition to an ordering, DMLS also gives an assembly tree with the correct frontal
size that MA41 UNS can use. It is important to note that numerical pivoting has little
effect on the structural changes. But this is not the case with AMDF, which is based
on the graph of the symmetrized matrix A+AT . We see that the difference between

240 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5
0.7

1

1.3

2

3

4

Structural Symmetry

R
a

ti
o

 f
lo

p
s
 (

A
M

D
/D

M
L

S
−

M
F

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5
0.7

1

1.3

2

3

4

Structural Symmetry

R
a

ti
o

 f
lo

p
s
 (

A
M

D
F

/D
M

L
S

−
M

F
)

Fig. 6. Ratio of the number of floating-point operations in factorization. Left: AMD/DMLS-MF,
mean ratio is 1.64, median ratio is 1.39; right: AMDF/DMLS-MF, mean ratio is 1.56, median ratio is
1.17; note that matrix orani678 was excluded from the two plots because its flop reduction is almost
8 when compared to AMDF.

Table 1

Test matrices. StructSym denotes the structural symmetry (both before and after preprocessing).

Group/matrix n nnz StructSym Description
Before After

Vavasis/av41092 41092 1683902 0.00 0.08 Unstructured finite element
Hollinger/g7jac200sc 59310 837936 0.10 0.10 Economic model
Hollinger/jan99jac120sc 41374 260202 0.00 0.16 Economic model
Mallya/lhr34c 35152 764014 0.00 0.19 Light hydrocarbon recovery
Mallya/lhr71c 70304 1528092 0.00 0.21 Light hydrocarbon recovery
Hollinger/mark3jac140sc 64089 399735 0.22 0.21 Economic model
Grund/bayer01 57735 277774 0.00 0.25 Chemical process simulation
Hohn/sinc18 16428 973826 0.01 0.27 Single-material crack problem
Hohn/sinc15 11532 568526 0.01 0.27 Single-material crack problem
Zhao/Zhao2 33861 166453 0.94 0.27 Electromagnetism
Hohn/fd18 16428 63406 0.00 0.29 Crack problem
Sandia/mult dcop 03 25187 193216 0.66 0.37 Circuit simulation
ATandT/twotone 120750 1224224 0.28 0.43 Harmonic balance method
ATandT/onetone1 36057 341088 0.10 0.43 Harmonic balance method
Norris/torso1 116158 8516500 0.43 0.43 Bioengineering
Grund/poli large 15575 33074 0.47 0.47 Chemical process simulation
Shen/shermanACb 18510 145149 0.26 0.50 Circuit simulation
ATandT/pre2 659033 5959282 0.36 0.58 Harmonic balance method
Shen/e40r0100 17281 553562 0.33 0.89 Fluid dynamics

estimation and actual size is significant, and the estimation is often much larger than
the actual size. This is because the MA41 UNS factorization algorithm can dynamically
exploit a more precise frontal matrix structure at each pivot, which can be rectangular
and smaller than the frontal matrix structure predicted by AMDF. (The frontal matrix
predicted by AMDF is always square due to initial, global symmetrization A + AT .)
Furthermore, it has been observed in [6] that an even larger difference can occur in the
size of the stack memory. Therefore, after AMDF (or AMD) ordering and before numerical
factorization, one should run a nonsymmetric symbolic factorization algorithm to
identify the nonsymmetric structures needed to perform numerical factorization. In

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 241

our context this extra cost should thus be added to the analysis time when an ordering
based on A + AT is used.

In addition to the actual factor size and the floating-point operations, we also
report the peak memory (labeled “Real memory” in Table 2) needed to factorize the
matrix, which is measured in the number of double precision words. For some classes
of matrices (ATandT, Mallya, Norris, Sandia) the DMLS-MF ordering leads to much less
memory usage than that of AMDF. For some other classes of matrices (Grund, Vavasis,
Shen), the results are comparable. We found that the Hollinger matrices are very
sensitive to the initial random permutations. For example, the number of operations
varies between 6.5× 108 and 8.3× 108 using AMDF, between 12.7× 108 and 18.4× 108

using DMLS-MF, and between 17.1×108 and 20.7×108 using AMD. Moreover, for this class
of matrices, MA41 UNS combined with the AMD ordering applied to A+AT significantly
outperforms all the nonsymmetric solvers considered in [7]. Using AMDF thus further
reduced the number of operations, and the attempt to exploit the asymmetry of the
original matrix did not improve the ordering quality (as shown by the UMPFPACK code
which attempts to exploit all the asymmetry [7]).

For smaller matrices in the same classes, which are among the complete set of 61
matrices but not shown in Table 2, we have observed a similar behavior. One should
point out that on reducible matrices it is always beneficial to first permute to BTF
and then apply the ordering to the diagonal block. Furthermore, it has been observed
(private communication with Stan Einsenstat) that if one compares the orderings on
the largest diagonal block of the BTF, the gains of DMLS relative to AMDF as reported
in this paper are reduced. We feel that this can be only partially explained by the
fact that the diagonal blocks of the BTF permuted reducible matrices tend to be
structurally more symmetric than the original matrices.

Finally, we report in Table 2 the runtimes of the ordering algorithms. Since both
AMDF and DMLS-MF exploit approximate degree calculations, the complexity of these two
codes is directly related to that of the AMD ordering. For DMLS, since we need to maintain
the adjacency structures and the approximate degrees both rowwise and columnwise,
we expect DMLS-MF to be twice as slow as AMDF. This is in general true except for Hohn
and Norris classes of matrices, for which DMLS-MF is much slower. For Hohn/Sinc*
matrices, large dense off-diagonal blocks lead to larger supervariables in the graph of
A + AT than in the graph of A. In this case, the asymmetry prevents DMLS-MF from
selecting larger supervariables, whereas it is not sufficiently nonsymmetric to lead to
better ordering. For the matrix Norris/Torso1, the situation is different for at least
two reasons. First, taking into account the asymmmetry of the matrix significantly
improves the quality of the ordering. Second, it has been shown in our recent work [5]
(generalization of the DMLS approach to allow off-diagonal and numerical-based pivot
selection) that using separate row and column supervariables, one can significantly
decrease the ordering time on this class of matrices, and this is true even when pivot
selection is restricted to the diagonal as in DMLS. However, considering separate row
and column supervariables is not at all natural in the DMLS context; it would require
significant modifications of the data structures used in DMLS code and is out of the
scope of this work.

In this section, we have focused on the comparison among the local heuristic-
based orderings. We believe that improving local heuristics will also benefit the global
heuristic orderings that often combine global and local heuristics. Furthermore, we
also observed (experiments not reported in this paper) that DMLS-MF ordering is at
least as good as a nested dissection ordering in preserving sparsity of the factors for
most matrices from our set of 19 large matrices.

242 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

T
a
b
l
e

2

C
o
m

pa
ri

so
n

o
f
D
M
L
S
-
M
F

a
n
d
A
M
D
F

o
rd

er
in

gs
.

M
a
tr

ix
S
iz

e
o
f
fa

c
to

rs
(1

0
6
)

F
lo

p
s

(1
0
9
)

R
e
a
l
m

e
m

o
ry

O
rd

e
ri

n
g

ti
m

e
E

st
im

a
te

d
A

c
tu

a
l

(1
0
6
)

(s
e
c
o
n
d
s)

A
M

D
F

D
M

L
S

R
a
ti

o
A

M
D

F
D

M
L
S

R
a
ti

o
A

M
D

F
D

M
L
S

R
a
ti

o
A

M
D

F
D

M
L
S

R
a
ti

o
A

M
D

F
D

M
L
S

R
a
ti

o
a
v
4
1
0
9
2
.r

u
a

1
1
.9

8
9
.2

9
1
.2

9
9
.1

6
9
.5

0
.9

6
3
.5

6
3
.4

8
1
.0

2
9
.4

3
9
.6

3
0
.9

8
0
.6

9
2
.8

0
.2

4
g
7
ja

c
2
0
0
sc

.r
u
a

3
0
.6

2
2
9
.8

4
1
.0

3
2
6
.1

2
2
9
.8

7
0
.8

7
2
5
.2

5
3
0
.9

8
0
.8

2
2
6
.9

4
3
0
.8

8
0
.8

7
4
.7

5
9
.3

1
0
.5

1
ja

n
9
9
ja

c
1
2
0
sc

.r
u
a

4
.5

4
.2

9
1
.0

5
3
.1

1
4
.2

9
0
.7

3
0
.7

7
1
.6

6
0
.4

6
3
.1

4
4
.5

3
0
.6

9
1
.2

3
2
.8

1
0
.4

4
lh

r3
4
c
.r

u
a

6
.2

2
3
.4

9
1
.7

8
5
.2

5
3
.6

2
1
.4

5
0
.6

0
.4

3
1
.4

1
5
.2

9
3
.6

9
1
.4

3
0
.5

5
2
.2

6
0
.2

4
lh

r7
1
c
.r

u
a

1
2
.7

7
7
.2

1
1
.7

7
1
0
.7

5
7
.4

3
1
.4

5
1
.2

7
0
.8

9
1
.4

3
1
0
.7

7
7
.4

9
1
.4

4
1
.2

4
5
.3

1
0
.2

3
m

a
rk

3
ja

c
1
4
0
sc

.r
u
a

1
9
.3

4
1
4
.8

9
1
.3

1
4
.9

1
4
.9

3
1

7
.6

8
7
.2

6
1
.0

6
1
5
.2

6
1
5
.4

1
0
.9

9
1
.3

8
4
.2

3
0
.3

3
b
a
y
e
r0

1
.r

u
a

2
.5

1
1
.9

9
1
.2

6
1
.8

8
1
.9

9
0
.9

5
0
.0

9
0
.1

1
0
.7

9
1
.8

8
2

0
.9

4
0
.5

9
1
.2

2
0
.4

9
si

n
c
1
8
.r

u
a

3
6
.7

6
3
1
.6

5
1
.1

6
2
9
.2

8
3
1
.7

2
0
.9

2
4
0
.8

4
6
0
.2

2
0
.6

8
3
0
.1

1
3
5
.3

9
0
.8

5
0
.9

8
1
0
.8

4
0
.0

9
si

n
c
1
5
.r

u
a

1
8
.0

3
1
5
.3

9
1
.1

7
1
4
.3

7
1
5
.4

7
0
.9

3
1
4
.3

1
2
1
.3

5
0
.6

7
1
4
.7

9
1
7
.5

4
0
.8

4
0
.4

9
4
.3

3
0
.1

1
Z
h
a
o
2
.r

u
a

1
5
.7

9
1
3
.9

1
.1

4
1
2
.9

7
1
4
.2

3
0
.9

1
7
.6

9
9
.1

9
0
.8

4
1
3
.7

8
1
5
.0

4
0
.9

2
0
.4

5
0
.9

5
0
.4

7
fd

1
8
.r

u
a

1
.4

4
1
.0

5
1
.3

8
1
.1

1
.0

7
1
.0

3
0
.1

1
0
.1

2
0
.9

5
1
.1

1
1
.1

2
0
.9

9
0
.1

0
.1

8
0
.5

3
m

u
lt

d
c
o
p

0
3
.r

u
a

2
.7

3
0
.9

4
2
.9

1
.8

7
0
.9

1
2
.0

7
0
.5

1
0
.1

2
4
.3

4
1
.9

6
0
.9

7
2
.0

2
3
.9

8
0
.4

3
9
.2

6
tw

o
to

n
e
.r

u
a

2
2
.0

5
8
.2

2
2
.6

8
1
5
.5

4
8
.2

2
1
.8

9
1
4
.7

4
5
.0

7
2
.9

1
1
5
.7

5
9
.0

5
1
.7

4
1
.7

9
2
.0

8
0
.8

6
o
n
e
to

n
e
1
.r

u
a

4
.8

5
3
.2

1
.5

1
4
.0

4
3
.2

1
.2

6
1
.9

4
1
.2

8
1
.5

1
4
.0

9
3
.6

5
1
.1

2
0
.3

3
0
.5

1
0
.6

4
to

rs
o
1
.r

u
a

4
1
.2

9
3
4
.0

8
1
.2

1
4
1
.2

8
3
4
.1

9
1
.2

1
5
8
.6

9
3
5
.9

1
1
.6

3
4
2
.3

4
3
6
.6

2
1
.1

6
1
.7

6
9
.4

2
0
.0

2
p
o
li

la
rg

e
.r

u
a

0
.0

6
0
.0

3
1
.7

0
.0

4
0
.0

3
1
.1

0
0

2
.1

9
0
.0

4
0
.0

3
1
.1

1
0
.0

2
0
.0

1
2
.1

6
sh

e
rm

a
n
A

C
b
.r

u
a

0
.5

5
0
.4

4
1
.2

6
0
.4

4
0
.4

4
1
.0

1
0
.0

3
0
.0

3
0
.9

1
0
.4

9
0
.5

1
0
.9

6
2
.1

7
0
.1

5
1
4
.4

4
p
re

2
.r

u
a

1
1
5
.5

8
9
0
.1

2
1
.2

8
1
0
7
.5

3
9
0
.2

3
1
.1

9
4
0
5
.9

3
2
2
6
.6

1
.7

9
1
6
1
.3

2
9
9
.9

8
1
.6

1
1
7
.0

3
6
1
.2

0
.2

8
e
4
0
r0

1
0
0
.r

u
a

2
.8

6
2
.1

8
1
.3

1
2
.7

8
2
.1

9
1
.2

7
0
.3

4
0
.2

8
1
.2

2
2
.8

3
2
.2

8
1
.2

4
0
.0

5
0
.1

2
0
.4

2
M

e
a
n

1
.4

8
1
.1

7
1
.4

0
1
.1

5
1
.6

7
M

e
d
ia

n
1
.2

9
1
.0

3
1
.0

6
0
.9

9
0
.4

4

DIAGONAL MARKOWITZ WITH LOCAL SYMMETRIZATION 243

4. Summary. In this paper, we have considered the ordering problem for the
triangular factorization of a sparse nonsymmetric matrix when pivots can be cho-
sen on the main diagonal. We have described a bipartite quotient graph model for
nonsymmetric elimination and have used it as a compact way to represent the elimi-
nation graph. The model was first proposed by Pagallo and Maulino [22], but to our
knowledge, its implementation did not appear in any literature. Using this model,
an ordering algorithm can be implemented in space bounded by the size of the orig-
inal matrix. This is the so-called in-place property. However, we have found that
a straightforward implementation may lead to an algorithm with much higher com-
plexity than an AMD type of algorithm applied to the graph of A + AT . In order to
speed up the ordering algorithm itself, we have introduced the local symmetrization
mechanism in the diagonal Markowitz scheme, which allows us to reduce the amount
of backtracking needed to update the Schur complement structure at each step. As a
result, we have obtained an efficient ordering algorithm both in space and in time—it
has the in-place property and the same time complexity as the AMD type of algorithms.

We have performed numerical experiments on large numbers of matrices (61)
that come from a wide range of applications. The results have showed that our modi-
fied diagonal Markowitz scheme indeed can produce better orderings. Compared to
the best local greedy algorithms that cannot exploit asymmetry, our algorithm has
achieved average gain ratios of 1.22 in factor size and 1.56 in flop count.

Acknowledgment. We owe a great deal to the anonymous referees whose careful
reading of the initial manuscript and valuable comments have helped us significantly
improved the presentation.

REFERENCES

[1] P. R. Amestoy, T. A. Davis, and I. S. Duff, An approximate minimum degree ordering
algorithm, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 886–905.

[2] P. R. Amestoy and I. S. Duff, Vectorization of a multiprocessor multifrontal code, Int. J.
Supercomputer Appl., 3 (1989), pp. 41–59.

[3] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li, Analysis and comparison of
two general sparse solvers for distributed memory computers, ACM Trans. Math. Software,
27 (2001), pp. 388–421.

[4] P. R. Amestoy, X. S. Li, and E. G. Ng, Diagonal Markowitz Scheme with Local Symmetriza-
tion, Technical report LBNL-53854, Lawrence Berkeley National Laboratory, Berkeley, CA,
2003; also appeared as ENSEEIHT-IRIT report RT/APO/03/05.

[5] P. R. Amestoy, X. S. Li, and S. Pralet, Unsymmetric ordering using a constrained
Markowitz scheme, SIAM J. Matrix Anal. Appl., to appear.

[6] P. R. Amestoy and C. Puglisi, An unsymmetrized multifrontal LU factorization, SIAM J.
Matrix Anal. Appl., 24 (2002), pp. 553–569.

[7] T. A. Davis, A column pre-ordering strategy for the unsymmetric-pattern multifrontal method,
ACM Trans. Math. Software, 30 (2004), pp. 165–195.

[8] I. S. Duff, R. G. Grimes, and J. G. Lewis, The Rutherford-Boeing Sparse Matrix Collection,
Technical report RAL-TR-97-031, Rutherford Appleton Laboratory, Didcot, UK, 1997;
also Technical report ISSTECH-97-017 from Boeing Information & Support Services and
Report TR/PA/97/36 from CERFACS, Toulouse; http://www.cse.clrc.ac.uk/Activity/
SparseMatrices/.

[9] I. S. Duff and J. Koster, The design and use of algorithms for permuting large entries to
the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889–901.

[10] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a
sparse matrix, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973–996.

[11] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, Oxford, UK, 1987.

[12] I. S Duff and J. K. Reid, The multifrontal solution of indefinite sparse symmetric linear
equations, ACM Trans. Math. Software, 9 (1983), pp. 302–325, 1983.

244 PATRICK R. AMESTOY, XIAOYE S. LI, AND ESMOND G. NG

[13] A. George and J. W. H. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall, Englewood Cliffs, NJ, 1981.

[14] K. Goto, High-Performance BLAS, http://www.cs.utexas.edu/users/flame/goto/.
[15] hsl, A Collection of Fortran Codes for Large Scale Scientific Computation, http://www.cse.

clrc.ac.uk/Activity/HSL (2000).
[16] X. S. Li and J. W. Demmel, SuperLU DIST: A scalable distributed-memory sparse direct

solver for unsymmetric linear systems, ACM Trans. Math. Software, 29 (2003), pp. 110–
140.

[17] J. W. H. Liu, Modification of the minimum degree algorithm by multiple elimination, ACM
Trans. Math. Software, 11 (1985), pp. 141–153.

[18] J. W. H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Anal.
Appl., 11 (1990), pp. 134–172.

[19] H. M. Markowitz, The elimination form of the inverse and its application to linear program-
ming, Management Sci., 3 (1957), pp. 255–269.

[20] E. G. Ng and P. Raghavan, Performance of greedy ordering heuristics for sparse Cholesky
factorization, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 902–914.

[21] M. Olshowka and A. Neumaier, A new pivoting strategy for Gaussian elimination, Linear
Algebra Appl., 240 (1996), pp. 131–151.

[22] G. Pagallo and C. Maulino, A bipartite quotient graph model for unsymmetric matrices,
in Numerical Methods, Lecture Notes in Math. 1005, Springer-Verlag, New York, 1983,
pp. 227–239.

[23] D. J. Rose and R. E. Tarjan, Algorithmics aspects of vertex elimination on directed graphs,
SIAM J. Appl. Math., 34 (1978), pp. 176–197.

[24] E. Rothberg and S. C. Eisenstat, Node selection strategies for bottom-up sparse matrix
ordering, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 682–695.

